Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474822

RESUMO

Alcoholic liver disease (ALD) is primarily caused by long-term excessive alcohol consumption. Cyanidin-3-O-glucoside (C3G) is a widely occurring natural anthocyanin with multiple biological activities. This study aims to investigate the effects of C3G isolated from black rice on ALD and explore the potential mechanism. C57BL/6J mice (male) were fed with standard diet (CON) and Lieber-DeCarli liquid-fed (Eth) or supplemented with a 100 mg/kg/d C3G Diet (Eth-C3G), respectively. Our results showed that C3G could effectively ameliorate the pathological structure and liver function, and also inhibited the accumulation of liver lipids. C3G supplementation could partially alleviate the injury of intestinal barrier in the alcohol-induced mice. C3G supplementation could increase the abundance of Norank_f_Muribaculaceae, meanwhile, the abundances of Bacteroides, Blautia, Collinsella, Escherichia-Shigella, Enterococcus, Prevotella, [Ruminococcus]_gnavus_group, Methylobacterium-Methylorubrum, Romboutsia, Streptococcus, Bilophila, were decreased. Spearman's correlation analysis showed that 12 distinct genera were correlated with blood lipid levels. Non-targeted metabolic analyses of cecal contents showed that C3G supplementation could affect the composition of intestinal metabolites, particularly bile acids. In conclusion, C3G can attenuate alcohol-induced liver injury by modulating the gut microbiota and metabolites, suggesting its potential as a functional food ingredient against alcoholic liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Masculino , Animais , Antocianinas/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Glucosídeos/farmacologia
2.
Micromachines (Basel) ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37241590

RESUMO

The eutrophication of aquatic ecosystems caused by rapid human urbanization has led to an increased production of potentially hazardous bacterial populations, known as blooms. One of the most notorious forms of these aquatic blooms are cyanobacteria, which in sufficiently large quantities can pose a hazard to human health through ingestion or prolonged exposure. Currently, one of the greatest difficulties in regulating and monitoring these potential hazards is the early detection of cyanobacterial blooms, in real time. Therefore, this paper presents an integrated microflow cytometry platform for label-free phycocyanin fluorescence detection, which can be used for the rapid quantification of low-level cyanobacteria and provide early warning alerts for potential harmful cyanobacterial blooms. An automated cyanobacterial concentration and recovery system (ACCRS) was developed and optimized to reduce the assay volume, from 1000 mL to 1 mL, to act as a pre-concentrator and subsequently enhance the detection limit. The microflow cytometry platform utilizes an on-chip laser-facilitated detection to measure the in vivo fluorescence emitted from each individual cyanobacterial cell, as opposed to measuring overall fluorescence of the whole sample, potentially decreasing the detection limit. By applying transit time and amplitude thresholds, the proposed cyanobacteria detection method was verified by the traditional cell counting technique using a hemocytometer with an R2 value of 0.993. It was shown that the limit of quantification of this microflow cytometry platform can be as low as 5 cells/mL for Microcystis aeruginosa, 400-fold lower than the Alert Level 1 (2000 cells/mL) set by the World Health Organization (WHO). Furthermore, the decreased detection limit may facilitate the future characterization of cyanobacterial bloom formation to better provide authorities with ample time to take the appropriate actions to mitigate human risk from these potentially hazardous blooms.

3.
ACS Sens ; 8(4): 1558-1567, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926840

RESUMO

Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.


Assuntos
COVID-19 , Purificação da Água , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Águas Residuárias , Oligonucleotídeos
4.
Int J Biol Macromol ; 230: 123163, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623622

RESUMO

Phellinus linteus (P. linteus) is a famous Chinese medicine and has a long history in China. In recent years, P. linteus polysaccharides (PLPs) have attracted extensive attention because of their biological activities such as anti-bacteria, anti-aging, anti-oxidation, anti-inflammation, anti-tumor, hepatoprotective effect and hypoglycemic effect. In this review, we systemically summarized the advances in extractions, purifications and structural characterizations of PLPs, and also analyzed their biological functions and molecular mechanisms. Meanwhile, the structure-activity relationships of PLPs are closely related to their anti-oxidation and anti-tumor activities. So far, the applications of PLPs are still very limited, further exploring structure-activity relationships, biological functions and their mechanisms of PLPs will promote to develop functional foods.


Assuntos
Basidiomycota , Basidiomycota/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Anti-Inflamatórios , China
5.
Crit Rev Food Sci Nutr ; 63(22): 5967-5983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35068283

RESUMO

Inflammation is a major factor affecting human health. Nuclear factor-kappa B (NF-κB) plays a vital role in the development of inflammation, and the promoters of most inflammatory cytokine genes have NF-κB-binding sites. Targeting NF-κB could be an exciting route for the prevention and treatment of inflammatory diseases. As important constituents of natural plants, lignans are proved to have numerous biological functions. There are growing pieces of evidence demonstrate that lignans have the potential anti-inflammatory activities. In this work, the type, structure and source of lignans and the influence on mitigating the inflammation are systematically summarized. This review focuses on the targeting NF-κB signaling pathway in the inflammatory response by different lignans and their molecular mechanisms. Lignans also regulate gut microflora and change gut microbial metabolites, which exert novel pathway to prevent NF-κB activation. Taken together, lignans target NF-κB with various mechanisms to inhibit inflammatory cytokine expressions in the inflammatory response. It will provide a scientific theoretical basis for further research on the anti-inflammatory effects of lignans and the development of functional foods.


Assuntos
Microbioma Gastrointestinal , Lignanas , Humanos , NF-kappa B/metabolismo , Lignanas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
6.
Crit Rev Food Sci Nutr ; 63(1): 114-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34227906

RESUMO

Bioactive substances derived from natural products are valued for effective health-related activities. As extremely important component of plants, animal cell membrane and microbes cytoderm, polysaccharides have been applied as medications, foods and cosmetics stemming from their prominent biological functions and minor side-effects. Recent studies indicate that polysaccharides exert biological effects also through epigenetic mechanism. Through the intervention of DNA methylation, histone modification, and non-coding RNA, polysaccharides participatate in regulation of immunity/inflammation, glucose and lipid metabolism, antioxidant damage and anti-tumor, which presents novel mechanism of polysaccharide exerting various functions. In this review, the latest advances in the biological functions of dietary polysaccharides via epigenetic regulations were comprehensively summarized and discussed. From the view point of epigenetic regulation, investigating the relationship between polysaccharides and biological effects will enhance our understandings of polysaccharides and also means huge breakthrough of molecular mechanism in the polysaccharide research fields. The paper will provide important reference to these investigators of polysaccharide research and expand the applications of dietary polysaccharides in the functional food developments.


Assuntos
Produtos Biológicos , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Epigênese Genética , Estudos Prospectivos , Antioxidantes , Carboidratos da Dieta
7.
J Agric Food Chem ; 71(1): 96-109, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541706

RESUMO

Cancer is the most serious problem for public health. Traditional treatments often come with unavoidable side effects. Therefore, the therapeutic effects of natural products with wide sources and low toxicity are attracting more and more attention. Polysaccharides have been shown to have cancer-fighting potential, but the molecular mechanisms remain unclear. The mammalian target of rapamycin (mTOR) pathway has become an attractive target of antitumor therapy research in recent years. The regulation of mTOR pathway not only affects cell proliferation and growth but also has an important effect in tumor metabolism. Recent studies indicate that dietary polysaccharides play a vital role in cancer prevention and treatment by regulating mTOR pathway. Here, the progress in targeting mTOR signaling by dietary polysaccharides in cancer prevention and their molecular mechanisms are systemically summarized. It will promote the understanding of the anticancer effects of polysaccharides and provide reference to investigators of this cutting edge field.


Assuntos
Neoplasias , Polissacarídeos , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico
8.
Nutrients ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501200

RESUMO

Dietary polyphenols can be utilized to treat obesity and chronic disorders linked to it. Dietary polyphenols can inhibit pre-adipocyte proliferation, adipocyte differentiation, and triglyceride accumulation; meanwhile, polyphenols can also stimulate lipolysis and fatty acid ß-oxidation, but the molecular mechanisms of anti-obesity are still unclear. The mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cell growth, survival, metabolism, and immunity. mTOR signaling is also thought to play a key role in the development of metabolic diseases such as obesity. Recent studies showed that dietary polyphenols could target mTOR to reduce obesity. In this review, we systematically summarized the research progress of polyphenols in preventing obesity through the mTOR signaling pathway. Mechanistically, polyphenols can target multiple signaling pathways and gut microbiota to regulate the mTOR signaling pathway to exert anti-obesity effects. The main mechanisms include: modulating lipid metabolism, adipogenesis, inflammation, etc. Dietary polyphenols exerting an anti-obesity effect by targeting mTOR signaling will broaden our understanding of the anti-obesity mechanisms of polyphenols and provide valuable insights for researchers in this novel field.


Assuntos
Obesidade , Polifenóis , Humanos , Polifenóis/farmacologia , Obesidade/prevenção & controle , Obesidade/metabolismo , Transdução de Sinais , Adipogenia , Lipólise , Serina-Treonina Quinases TOR/metabolismo
9.
J Food Biochem ; 46(12): e14500, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36515171

RESUMO

Alcoholic liver disease (ALD) has become a health issue globally. Laminarin, a low molecular weight marine-derived ß-glucan, has been identified with multiple biological activities. In this study, the ameliorative effect on ALD of laminarin isolated from brown algae was investigated. Phenotypic, pathological alterations and biochemical characteristics indicated that laminarin administration (100 mg/kg/day) significantly alleviated liver injury and improved liver function in the alcohol-induced mice. Gene chip results indicated that laminarin treatment caused 52 up-regulated and 13 down-regulated genes in the hepatic tissues of alcohol-induced damage mice, and most of these genes are associated with regulation of oxidative stress (such as CYP450/glutathione-dependent antioxidation), Wnt signaling pathway, retinol metabolism, and cAMP pathway based on GO and KEGG analysis. PPI network analysis indicated that the downstream target genes lied in the hub of the net. Our experiments also confirmed the changed expressions of some target genes. Taken together, these results suggest that laminarin can ameliorate alcohol-induced damage in mice and its molecular mechanism lies in modulating anti-oxidation pathway, WNT pathway, and cAMP pathway, which regulate the expressions of downstream target genes and alleviate alcohol-induced damage. Our study provides new clue to prevent alcohol-induced damage and will be benefit to develop functional foods. PRACTICAL APPLICATIONS: This study verified the positive effect on alcoholic liver disease (ALD) of laminarin, a water-soluble brown algae-derived ß-glucan, linked by ß-(1,3) glycosidic bonds with ß-(1,6) branches. Laminarin significantly alleviated liver injury and improved liver function of ALD mice. Moreover, transcriptomics and bioinformatics analysis further revealed the gene expression patterns, hub targets, and signalings including CYP450/glutathione, Wnt, retinol metabolism, cAMP pathways regulated by laminarin. This research is the first evidence for hepatoprotective effect of laminarin against ALD and its molecular mechanism, which will be advantage to develop functional foods or adjuvant therapy of ALD.


Assuntos
Hepatopatias Alcoólicas , beta-Glucanas , Camundongos , Animais , Vitamina A , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/genética , Etanol , Glutationa
10.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315046

RESUMO

Quinoa is known to be a rich source of nutrients and bioactive components. Quinoa bran, used mainly as animal feed in processing by-products, is also a potential source of bioactive ingredients being conducive to human health. The importance of nutrition and function of quinoa seed has been discussed in many studies, but the bioactive properties of quinoa bran often are overlooked. This review systemically summarized the progress in bioactive components, extraction, and functional investigations of quinoa bran. It suggests that chemically assisted electronic fractionation could be used to extract albumin from quinoa bran. Ultrasound-assisted extraction method is a very useful method for extracting phenolic acids, triterpene saponins, and flavonoids from quinoa bran. Based on in vitro and in vivo studies for biological activities, quinoa bran extract exhibits a wide range of beneficial properties, including anti-oxidant, anti-diabetes, anti-inflammation, anti-bacterial and anti-cancer functions. However, human experiments and action mechanisms need to investigate. Further exploring quinoa bran will promote its applications in functional foods, pharmaceuticals, and poultry feed in the future.

11.
Foods ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230032

RESUMO

Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.

12.
Phytother Res ; 36(11): 4024-4040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36227024

RESUMO

Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/ß-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/ß-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica
13.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816298

RESUMO

The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials. Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35657939

RESUMO

Hybrid organic-inorganic composites based on organic photochromic crystals embedded in inorganic templates provide a new approach to photomechanical materials. Diarylethene (DAE) nanowire crystals grown in Al2O3 membranes have exhibited reversible photoinduced bending and lifting [Dong, X., Chem. Mater. 2019, 31, 1016-1022]. In this paper, the hybrid approach is extended to porous SiO2 membranes. Despite the different template material (SiO2 instead of Al2O3) and much larger channels (5 µm diameter instead of 0.2 µm diameter), similar photomechanical behavior is observed for this new class of organic-inorganic hybrid actuators. The ability to reuse individual glass templates across different DAE filling cycles allows us to show that the DAE filling step is crucial for determining the mechanical work done by the bending template. The bending curvature also depends quadratically on the template thickness, in good agreement with theory. The light-induced bending can be repeated for up to 150 cycles without loss of performance, suggesting good fatigue resistance. The results in this paper demonstrate that the hybrid organic-inorganic approach can be extended to other host materials and template geometries. They also suggest that optimizing the organic filling and template thickness could improve the work output by an order of magnitude.

15.
Foods ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681357

RESUMO

The incidence of obesity has increased significantly on account of the alterations of living habits, especially changes in eating habits. In this study, we investigated the effect of octacosanol on lipid lowering and its molecular mechanism. High-fat diet (HFD)-induced obesity mouse model was used in the study. Thirty C57BL/6J mice were divided into control, HFD, and HFD+Oct groups randomly, and every group included ten mice. The mice of HFD+Oct group were intragastrically administrated 100 mg/kg/day of octacosanol. After 10 weeks for treatment, our results indicated that octacosanol supplementation decreased the body, liver, and adipose tissues weight of HFD mice; levels of TC, TG, and LDL-c were reduced in the plasma of HFD mice; and level of HDL-c were increased. H&E staining indicated that octacosanol supplementation reduces the size of fat droplets of hepatic tissues and adipose cells comparing with the HFD group. Gene chip analysis found that octacosanol regulated 72 genes involved in lipid metabolism in the tissues of liver comparing to the HFD group. IPA pathway network analysis indicated that PPAR and AMPK may play a pivotal role in the lipid-lowering function of octacosanol. Real-time quantitative PCR and Western blot showed that the octacosanol supplementation caused change of expression levels of AMPK, PPARs, FASN, ACC, SREBP-1c, and SIRT1, which were closely related to lipid metabolism. Taken together, our results suggest that octacosanol supplementation exerts a lipid-decreasing effect in the HFD-fed mice through modulating the lipid metabolism-related signal pathway.

16.
J Agric Food Chem ; 70(21): 6429-6443, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587527

RESUMO

Hyperlipidemia is intricately associated with the dysregulation of gut microbiota and host metabolomes. This study explored the antihyperlipidemic function of oryzanol and investigated whether the function of oryzanol affected the gut microbiome and its related metabolites. Hamsters were fed a standard diet (Control) and a high fat and cholesterol (HFCD) diet with or without oryzanol, separately. Our results showed that oryzanol significantly decreased HFCD-induced fat accumulation, serum total cholesterol, low-density lipoprotein cholesterol (LDL-c), LDL-c/HDL-c ratio, triglyceride, and liver steatohepatitis, attenuated HFCD-induced gut microbiota alterations, and altered amino acid concentrations in feces and the liver. We investigated the role of the gut microbiota in the observed beneficial effects; the protective effects of oryzanol were partly diminished by suppressing the gut bacteria of hamsters after using antibiotics. A fecal microbiota transplantation experiment was carried out by transplanting the feces from HFCD group hamsters or hamsters given oryzanol supplementation (as a donor hamster). Our results showed that administering the fecal liquid from oryzanol-treated hamsters attenuated HFCD-induced hyperlipidemia, significantly decreased the abundance of norank_f__Erysipelotrichaceae, norank_f__Eubacteriaceae, and norank_f__Oscillospiraceae and the concentration of tyrosine. These outcomes are significantly positively correlated with serum lipid concentration. This study illustrated that gut microbiota is the target of oryzanol in the antihyperlipidemic effect.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Doenças Metabólicas , Aminoácidos/metabolismo , Animais , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Fenilpropionatos
17.
Food Funct ; 13(8): 4486-4501, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35348138

RESUMO

A high fat and cholesterol diet (HFCD) can modulate the gut microbiota, which is closely related with hypercholesterolemia. This study aimed to explore the anti-hypercholesterolemia effect of oryzanol, and investigate whether the function of oryzanol is associated with the gut microbiota and related metabolites. 16S rRNA and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry were applied for the gut microbiota and untargeted metabolomics, respectively. The results showed that HFCD significantly upregulated body fat accumulation and serum lipids, including triglyceride, total cholesterol, low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), and ratio of LDL-c/HDL-c, which induced hypercholesterolemia. Oryzanol supplementation decreased body fat accumulation and serum lipids, especially the LDL-c concentration and LDL-c/HDL-c ratio. In addition, the abundances of Desulfovibrio, Colidextribacter, norank_f__Oscillospiraceae, unclassified_f__Erysipelotrichaceae, unclassified_f__Oscillospiraceae, norank_f__Peptococcaceae, Oscillibacter, Bilophila and Harryflintia were increased and the abundance of norank_f__Muribaculaceae was decreased in HFCD-induced hyperlipidemia hamsters. Metabolites were changed after HFCD treatment and 9 differential metabolites belonged to bile acids and 8 differential metabolites belonged to amino acids. Those genera and metabolites were significantly associated with serum lipids. HFCD also disrupted the intestinal barrier. Oryzanol supplementation reversed the changes of the gut microbiota and metabolites, and intestinal barrier injury was also partly relieved. This suggests that oryzanol supplementation modulating the gut microbiota contributes to its anti-hyperlipidemia function, especially anti-hypercholesterolemia.


Assuntos
Microbioma Gastrointestinal , Hipercolesterolemia , Hiperlipidemias , Animais , Colesterol , HDL-Colesterol , LDL-Colesterol , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/tratamento farmacológico , Fenilpropionatos , RNA Ribossômico 16S/genética
18.
Mol Nutr Food Res ; 66(2): e2100732, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802178

RESUMO

Cancer is a serious public health problem in the world and a major disease affecting human health. Dietary polyphenols have shown good potential in the treatment of various cancers. It is worth noting that cancer cells usually exhibit metabolic abnormalities of high glucose intake and inefficient utilization. AMPK is the key molecule in the regulation of energy metabolism and is closely related with obesity and diabetes. Recent studies indicate that AMPK also plays an important role in cancer prevention and regulating cancer-related genes and pathways, and dietary polyphenols can significantly regulate AMPK activity. In this review, the progress of dietary polyphenols preventing carcinogenesis via AMPK pathway is systemically summarized. From the viewpoint of interfering energy metabolism, the anti-cancer effects of dietary polyphenols are explained. AMPK pathway modulated by different dietary polyphenols affects pathways and target genes are summarized. Dietary polyphenols exert anti-cancer effect through the target molecules regulated by AMPK, which broadens the understanding of polyphenols anti-cancer mechanisms and provides value reference for the investigators of the novel field.


Assuntos
Neoplasias , Polifenóis , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Humanos , Neoplasias/prevenção & controle , Obesidade/metabolismo , Polifenóis/farmacologia , Transdução de Sinais
19.
Oxid Med Cell Longev ; 2021: 2637577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630847

RESUMO

Studies have shown that the peroxidation caused by oxygen free radicals is an important reason of vascular endothelial dysfunction and multiple diseases. In this study, active peptides (F2ds) were isolated from the fermentation product of rice dregs and its antioxidant effects were approved. Human umbilical vein endothelial cells (HUVECs) stimulated by H2O2 were used to evaluate the antioxidation effect and its molecular mechanism in the oxidative stress model. F2d protected H2O2-induced damage in HUVECs in a dosage-dependent manner. F2d can reduce the expression of Keap1, promote the expression of Nrf2, and activate the downstream target HO-1, NQO1, etc. It means F2d can modulate the Nrf2 signaling pathway. Using Nrf2 inhibitor ML385 to block the Nrf2 activation, the protective function of F2d is partially lost in the damage model. Our results indicated that F2d isolated from rice exerts antioxidant effects via the Nrf2 signaling pathway in H2O2-induced damage, and the work will benefit to develop functional foods.


Assuntos
Antioxidantes/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oryza/química , Peptídeos/farmacologia , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Aspergillus niger , Sobrevivência Celular/efeitos dos fármacos , Fermentação , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oryza/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo
20.
J Agric Food Chem ; 69(27): 7603-7618, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223764

RESUMO

Several publications report that octacosanol (OCT) has different biological functions. This study was designed to evaluate the antifatigue effect and molecular mechanism of octacosanol (200 mg/(kg day)) in forced exercise-induced fatigue models of trained male C57BL/6 mice. Results showed that octacosanol ameliorated the mice's autonomic activities, forelimb grip strength, and swimming endurance, and the levels of liver glycogen (LG), muscle glycogen (MG), blood lactic acid (BLA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were also regulated. Gene analysis results showed that treatment with OCT upregulated 29 genes, while 38 genes were downregulated in gastrocnemius tissue. Gene ontology (GO) analyses indicated that these genes enriched functions in relation to myofibril, contractile fiber, and calcium-dependent adenosinetriphosphatase (ATPase) activity. Octacosanol supplementation significantly adjusted the messenger RNA (mRNA) and protein expression levels related to fatigue performance. Octacosanol has an observably mitigating effect in exercise-induced fatigue models, and its molecular mechanism may be related to the regulation of tripartite motif-containing 63 (Trim63), periaxin (Prx), calcium voltage-gated channel subunit α1 H (Cacna1h), and myosin-binding protein C (Mybpc3) expression.


Assuntos
Fadiga , Resistência Física , Animais , Suplementos Nutricionais , Fadiga/tratamento farmacológico , Fadiga/genética , Álcoois Graxos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...